31 research outputs found

    Importance and effectiveness of representing the shapes of Cosserat rods and framed curves as paths in the special Euclidean algebra

    Get PDF
    We discuss how the shape of a special Cosserat rod can be represented as a path in the special Euclidean algebra. By shape we mean all those geometric features that are invariant under isometries of the three-dimensional ambient space. The representation of the shape as a path in the special Euclidean algebra is intrinsic to the description of the mechanical properties of a rod, since it is given directly in terms of the strain fields that stimulate the elastic response of special Cosserat rods. Moreover, such a representation leads naturally to discretization schemes that avoid the need for the expensive reconstruction of the strains from the discretized placement and for interpolation procedures which introduce some arbitrariness in popular numerical schemes. Given the shape of a rod and the positioning of one of its cross sections, the full placement in the ambient space can be uniquely reconstructed and described by means of a base curve endowed with a material frame. By viewing a geometric curve as a rod with degenerate point-like cross sections, we highlight the essential difference between rods and framed curves, and clarify why the family of relatively parallel adapted frames is not suitable for describing the mechanics of rods but is the appropriate tool for dealing with the geometry of curves.Comment: Revised version; 25 pages; 7 figure

    Normal stress differences in dense suspensions

    Get PDF
    The presence and the microscopic origin of normal stress differences in dense suspensions under simple shear flows are investigated by means of inertialess particle dynamics simulations, taking into account hydrodynamic lubrication and frictional contact forces. The synergic action of hydrodynamic and contact forces between the suspended particles is found to be the origin of negative contributions to the first normal stress difference N1N_1, whereas positive values of N1N_1 observed at higher volume fractions near jamming are due to effects that cannot be accounted for in the hard-sphere limit. Furthermore, we found that the stress anisotropy induced by the planarity of the simple shear flow vanishes as the volume fraction approaches the jamming point for frictionless particles, while it remains finite for the case of frictional particles.Comment: 14 pages, 9 figure

    Microstructure and thickening of dense suspensions under extensional and shear flows

    Get PDF
    Dense suspensions are non-Newtonian fluids which exhibit strong shear thickening and normal stress differences. Using numerical simulation of extensional and shear flows, we investigate how rheological properties are determined by the microstructure which is built under flows and by the interactions between particles. By imposing extensional and shear flows, we can assess the degree of flow-type dependence in regimes below and above thickening. Even when the flow-type dependence is hindered, nondissipative responses, such as normal stress differences, are present and characterise the non-Newtonian behaviour of dense suspensions.Comment: 11 pages, 6 figure

    Solution of the Kirchhoff-Plateau problem

    Get PDF
    The Kirchhoff-Plateau problem concerns the equilibrium shapes of a system in which a flexible filament in the form of a closed loop is spanned by a liquid film, with the filament being modeled as a Kirchhoff rod and the action of the spanning surface being solely due to surface tension. We establish the existence of an equilibrium shape that minimizes the total energy of the system under the physical constraint of non-interpenetration of matter, but allowing for points on the surface of the bounding loop to come into contact. In our treatment, the bounding loop retains a finite cross-sectional thickness and a nonvanishing volume, while the liquid film is represented by a set with finite two-dimensional Hausdorff measure. Moreover, the region where the liquid film touches the surface of the bounding loop is not prescribed a priori. Our mathematical results substantiate the physical relevance of the chosen model. Indeed, no matter how strong is the competition between surface tension and the elastic response of the filament, the system is always able to adjust to achieve a configuration that complies with the physical constraints encountered in experiments

    Optimal efficiency of quantum transport in a disordered trimer

    Full text link
    Disordered quantum networks, as those describing light-harvesting complexes, are often characterized by the presence of peripheral ring-like structures, where the excitation is initialized, and inner reaction centers (RC), where the excitation is trapped. The peripheral rings display coherent features: their eigenstates can be separated in the two classes of superradiant and subradiant states. Both are important to optimize transfer efficiency. In the absence of disorder, superradiant states have an enhanced coupling strength to the RC, while the subradiant ones are basically decoupled from it. Static on-site disorder induces a coupling between subradiant and superradiant states, creating an indirect coupling to the RC. The problem of finding the optimal transfer conditions, as a function of both the RC energy and the disorder strength, is very complex even in the simplest network, namely a three-level system. In this paper we analyze such trimeric structure choosing as initial condition a subradiant state, rather than the more common choice of an excitation localized on a site. We show that, while the optimal disorder is of the order of the superradiant coupling, the optimal detuning between the initial state and the RC energy strongly depends on system parameters: when the superradiant coupling is much larger than the energy gap between the superradiant and the subradiant levels, optimal transfer occurs if the RC energy is at resonance with the subradiant initial state, whereas we find an optimal RC energy at resonance with a virtual dressed state when the superradiant coupling is smaller than or comparable with the gap. The presence of dynamical noise, which induces dephasing and decoherence, affects the resonance structure of energy transfer producing an additional 'incoherent' resonance peak, which corresponds to the RC energy being equal to the energy of the superradiant state.Comment: This article shares part of the introduction and most of Section II with arXiv:1508.01613, the remaining parts of the two articles treat different problem

    Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids

    Full text link
    We consider the free fall of slender rigid bodies in a viscous incompressible fluid. We show that the dimensional reduction (DR), performed by substituting the slender bodies with one-dimensional rigid objects, together with a hyperviscous regularization (HR) of the Navier--Stokes equation for the three-dimensional fluid lead to a well-posed fluid-structure interaction problem. In contrast to what can be achieved within a classical framework, the hyperviscous term permits a sound definition of the viscous force acting on the one-dimensional immersed body. Those results show that the DR/HR procedure can be effectively employed for the mathematical modeling of the free fall problem in the slender-body limit.Comment: arXiv admin note: substantial text overlap with arXiv:1305.070

    Periodic rhomboidal cells for symmetry-preserving homogenization and isotropic metamaterials

    Full text link
    In the design and analysis of composite materials based on periodic arrangements of sub-units it is of paramount importance to control the emergent material symmetry in relation to the elastic response. The target material symmetry plays also an important role in additive manufacturing. In numerous applications it would be useful to obtain effectively isotropic materials. While these typically emerge from a random microstructure, it is not obvious how to achieve isotropy with a periodic order. We prove that arrangements of inclusions based on a rhomboidal cell that generates the Face-Centered Cubic lattice do in fact preserve any material symmetry of the constituents, so that spherical inclusions of isotropic materials in an isotropic matrix produce effectively isotropic composites.Comment: 8 pages; 1 figur

    Shear jamming and fragility of suspensions in a continuum model with elastic constraints

    Full text link
    Under an applied traction, highly concentrated suspensions of solid particles in fluids can turn from a state in which they flow to a state in which they counteract the traction as an elastic solid: a shear-jammed state. Remarkably, the suspension can turn back to the flowing state simply by inverting the traction. A tensorial model is presented and tested in paradigmatic cases. We show that, to reproduce the phenomenology of shear jamming in generic geometries, it is necessary to link this effect to the elastic response supported by the suspension microstructure rather than to a divergence of the viscosity.Comment: Updated figures and included Supplemental materia
    corecore